Depth resolved granular transport driven by shearing fluid flow
نویسندگان
چکیده
We investigate granular transport by a fluid flow under steady-state driving conditions, from the bed-load regime to the suspension regime, with an experimental system based on a conical rheometer. The mean granular volume fraction φg , the mean granular velocity ug , and the fluid velocity uf are obtained as a function of depth inside the bed using refractive index matching and particle-tracking techniques. A torque sensor is utilized to measure the applied shear stress to complement estimates obtained from measured strain rates high above the bed where φg ≈ 0. The flow is found to be transitional at the onset of transport and the shear stress required to transport grains rises sharply as grains are increasingly entrained by the fluid flow. A significant slip velocity between the fluid and the granular phases is observed at the bed surface before the onset of transport as well as in the bed-load transport regime. We show that ug decays exponentially deep into the bed for φg > 0.45 with a decay constant which is described by a nonlocal rheology model of granular flow that neglects fluid stress. Further, we show that uf and ug can be described using the applied shear stress and the Krieger-Dougherty model for the effective viscosity in the suspension regime, where 0 < φg < 0.45 and where ug ≈ uf .
منابع مشابه
Onset of sediment transport is a continuous transition driven by fluid shear and granular creep
Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the...
متن کاملOnset of flow in a horizontally vibrated granular bed: Convection by horizontal shearing
– We present experimental observations of the onset of flow for horizontally vibrated 3D granular systems. For accelerations Γ above Γ, the top layers of granular material flow, leading to convection with motion both parallel and transverse to the shaking; the lower part of the layer moves with the shaker in solid body motion. With increasing Γ, more of the layer becomes liquefied. The initial ...
متن کاملThe effects of cut-off walls on repulsing saltwater based on modeling of density-driven groundwater flow and salt transport
Abstract: A two-dimensional fully implicit finite difference model, which can be easily extended to three dimensions, is developed to study the effect of cut-off walls on saltwater intrusion into the aquifers. This model consists of a coupled system of two nonlinear partial differential equations which describe unsteady density-driven groundwater flow and solute transport. The numerica...
متن کاملNanoscale fluid transport: size and rate effects.
The transport behavior of water molecules inside a model carbon nanotube is investigated by using nonequilibrium molecular dynamcis (NMED) simulations. The shearing stress between the nanotube wall and the water molecules is identified as a key factor in determining the nanofluidic properties. Due to the effect of nanoscale confinement, the effective shearing stress is not only size sensitive b...
متن کاملTransport coefficients for granular media from molecular dynamics simulations.
Under many conditions, macroscopic grains flow like a fluid; kinetic theory predicts continuum equations of motion for this granular fluid. In order to test the theory, we perform event-driven molecular simulations of a two-dimensional gas of inelastic hard disks, driven by contact with a heat bath. Even for strong dissipation, high densities, and small numbers of particles, we find that contin...
متن کامل